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Abstract. The RTT relation with truncation is solved for theR-matrix associated with the six-
vertex model. It turns out that the finite expansion of the global solution of the transfer matrix
T (u) in terms of the spectral parameteru can be realized by the defined algebraAq formed by
slq (2) and the non-commutative coordinates. The Hamiltonian of the system has been found,
which is the trigonometric deformation of the Goryachev–Chaplygin gyrostat.

1. Introduction

The RTT relation plays a central role in establishing the connection between quantum
integrable systems and the quantum group symmetry [1–6]. For a givenR-matrix satisfying
the Yang–Baxter equation (YBE) a variety of transfer matricesT can be found to satisfy
the RTT relation. When theR-matrix is rational it defines the Yangian [2] for some Lie
algebras. For anR-matrix taking a trigonometric solution of the YBE, the usualq-affine
quantum algebras can be defined [3–6]. For a givenR(u) matrix satisfying the YBE the
commutation relations for each element of the transfer matrixT (u) can be set up which
form infinitely-dimensional algebras. The infinite expansion of the transfer matrixT (u) in
terms of the spectral parameteru leads to Yangian for rationalR(u) matrices [2–4]. The
Y (g) contains a set{Ia, Ja} and its mapping where{Ia} form a simple Lie algebrag and
{Ja} satisfy the relations given by Drinfeld [2]. This approach has further been proved to
be related to the RTT approach [4].

On the other hand, it is well known that ifLj(u), wherej is the site index, satisfies the
RLL relation, then so doesT (u) = ∏N

j=1 Lj(u), namely,T (u) can be anN -polynomial inu

if Lj(u) is linear inu. However, as pointed out by Sklyanin [7], there exists a new type of
solution of RTT, which cannot be proved to possess the above-mentioned form. An explicit
example is the Goryachev–Chaplygin (G–C) top [8] in whichT (u) has the truncation form

T (u) =
3∑

n=0

T (n)u−n. (1.1)

However, this is a ‘global type’ of solution of RTT, i.e. no corresponding localLj(u) is
found [7]. Actually the basic knowledge on the long-ranged-interaction models had shown
the validity of the statement. In the example of the G–C top the truncatedT (u) is a
mapping ofE(3) formed by the angular momentumL and coordinatesr = (x1, x2, x3).
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This extension is different from theT (u) viewed as the mapping of theY (SL(2)) formed
by I = J andJ which satisfied the Drinfeld relations [2].

The truncatedT (u) possesses physical significance, including the G–C gyrostat as the
simplest example. An interesting question arises: how can one extend the idea to the
trigonometric case? For a given six-vertex form ofR(u) matrix we should find a truncated
global trigonometricT (u) which takes the G–C gyrostat as its rational limit. We call it the
trigonometric extension of the G–C gyrostat.

This paper is organized as follows. In section 2 the general formulation of the truncated
RTT with R(u) = u + P is discussed. It will be emphasized that the truncatedT (u) is
related to the condition

T (0) =
[

1 0
0 0

]
. (1.2)

In section 3 the general relations for the truncated trigonometric transfer matrixT (n)(u)(|n| 6
3) will be shown. In section 4 a particular realization ofT (n)(u)(|n| 6 3) associated with
the six-vertex form of theR-matrix is given. In section 5 we rewrite the solution in an
appropriate form which takes the G–C gyrostat solution as its rational limit. Finally, we
check the results by taking the rational limit.

2. Truncated t(u) associated withSL(2)

For a given solution of the Yang–Baxter equation

Ř12(u)Ř23(u + v)Ř12(v) = Ř23(v)Ř12(u + v)Ř23(u) (2.1)

the RTT relation

Ř(u − v)(t (u) ⊗ t (v)) = (t (v) ⊗ t (u))Ř(u − v) (2.2)

whereŘ(u) = PR(u) is a rational solution of the YBE, leads to the quantum group through
the defining relations for the generatorst (u) = (t (u))ni,j=1 [2–4]. For a rational solution of
the YBE, associated withSL(2), one usest (u) to express the transfer matrix

t (u) = t (0) +
∞∑

n=1

u−nt (n) (2.3)

wheret (n) form a Yangian.
Let us start from the simplest rational solution of the YBE

Ř(u) = uP + I (2.4)

whereP is 4× 4 representation of the permutation operator. Substituting (2.4) into (2.2)
we obtain

[t (0)
ab , t

(n)
cd ] = 0 (a, b, c, d = 1, 2) (2.5)

[t (n+1)
bc , t

(m)
ad ] − [t (n)

bc , t
(m+1)
ad ] + t (n)

ac t
(m)
bd − t (m)

ac t
(n)
bd = 0 (m, n > 0). (2.6)

It is well known that the deformed determinant

dett (u) = t11(u)t22(u − 1) − t12(u)t21(u − 1) (2.7)

commutes with any elements oft (v):

[dett (u), tab(v)] = 0. (2.8)

From (2.8) it follows that

[Cn, Cm] = 0 [Cn, t
(n)] = 0 (2.9)
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where

dett (u) =
∞∑

n=0

u−nCn. (2.10)

It is easy to prove thatt (0) takes the form

t (0) =
[

1 0
0 µ

]
(2.11)

whereµ is a complex parameter. The standard choice isµ = 1. However, if we takeµ = 0
the algebraic structure will be tremendously modified. Let us study the consequences.

First, thet
(1)

22 is a centre of the algebra. It is easy to obtain from (2.5) and (2.6) that

[t (n)

12 , t
(1)

22 ] = [t (n)

21 , t
(1)

22 ] = [t (n)

11 , t
(1)

22 ] = 0 (2.12)

and

[t (1)

12 , t
(n)

11 ] = t
(n)

12 [t (1)

21 , t
(n)

11 ] = −t
(n)

21 [t (1)

12 , t
(n)

21 ] = t
(n)

22 (2.13)

where the relations with interchange of(n) and (1) are also valid. Obviously, (2.13) contains
a Heisenberg algebra, for example, by settingn = 1 andt

(1)

22 = 0:

t
(1)

11 = ip t
(1)

12 = e−q t
(1)

21 = e+q (2.14)

if [ p, q] = −i. This is the reason why we call the algebra Heisenberg type.
By taking the product of the local solutions given by (2.14), the Toda lattice model

is obtained. As we have emphasized, this is trivial for our discussion. What we are
interested in is finding a global solution which cannot be decomposed into the local products.
Equation (2.6) is equivalent to the following independent sets of relations:

[t (n)

22 , t
(2)

11 ] + t
(n)

21 t
(1)

12 − t
(1)

21 t
(n)

12 = 0 (2.15)

t
(n+1)

12 = [t (2)

12 , t
(n)

11 ] + t
(n)

11 t
(1)

12 − t
(1)

11 t
(n)

12

t
(n+1)

21 = [t (n)

11 , t
(2)

21 ] + t
(n)

11 t
(1)

21 − t
(1)

11 t
(n)

21 (2.16)

t
(n+1)

22 = [t (2)

12 , t
(n)

21 ] + t
(n)

11 t
(1)

21 − t
(1)

11 t
(n)

22

for n > 2 and

[t (n)
ij , t

(m)
ij ] = 0 [t (n)

ij , t
(m)
kl ] = [t (m)

ij , t
(n)
kl ] = 0 (2.17)

wherei, j, k, l = 1, 2.
The CasimirsCn for µ = 0 in (2.11) are given by

C0 = 0 C1 = t
(1)

22

Cj = t
(j)

22 +
∑

m+l=j
m,l 6=0

(l + m − 1)!

(m − 1)!l!
t
(m)

22

+
∑

m+n+l=j
m,n6=0

(l + m − 1)!

(m − 1)!l!
(t

(n)

11 t
(m)

22 − t
(n)

12 t
(m)

21 ) (j > 1) (2.18)

t (u) is called truncated ift (m) = 0 (m > 4).
Obviously if t (m) = 0, thent

(m+1)
ab = 0 by virtue of (2.16). To solve (2.13) and (2.15)–

(2.17) with the truncation att (4)
ab = 0, we set the ansatz (motivated by Sklyanin [7])

t
(1)

11 = αp t
(1)

22 = 0 t
(1)

12 = βeτqx+ t
(1)

21 = γ e−τq (2.19)
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and

t
(2)

11 = f1J
2 + f2J

2
3 + f3pJ3 + f4x− + f5 (2.20)

t
(3)

11 = (p + g3J3)(g1J
2 + g2J

2
3 + g5) + g4[J−, x3]+ (2.21)

wheref1, . . . , f5, g1, . . . , g4, α, β, γ andτ are parameters to be determined,J± = J1 ± iJ2

andx± = x1 ± ix2 obey the commutation relations(i, j, k = 1, 2, 3)

[Ji, Jj ] = −iεijkJk (2.22)

[Ji, xj ] = −iεijkxk (2.23)

[xi, xj ] = [p, Ji ] = [p, xi ] = [q, xi ] = [q, Ji ] = 0 (2.24)

[p, q] = −i (2.25)

and the relation
3∑

i=1

Jixi = 0. (2.26)

Substituting (2.19)–(2.26) into (2.15)–(2.17) we find

τ = −iα−1 f1 = − 1
4 f2 = − 3

4 f3 = α f5 = − 1
16

g1 = −g2 = − 1
4α g3 = −α−1 g4 = 1

4f4 g5 = − 1
16α (2.27)

and the solution of the RTT relation for (2.4) atµ = 0 in (2.11):

t
(2)

11 = − 1
4(J 2 + 3J 2

3 + 1
4) + αpJ3 + f x− t

(2)

22 = γβx+

t
(2)

12 = −βeτq(− 1
4[J+, x3]+ + x+(J3 − αp)) t

(2)

21 = γ e−τqJ3

t
(3)

11 = − 1
4α(p − α−1J3)(J

2 − J 2
3 + 1

4) + 1
4f [J−, x3]+

t
(3)

22 = 1
4βγ [J+, x3]+

t
(3)

12 = −βeτq{f x2
3 − 1

4α[J+, x3]+(p − α−1J3)}
t
(3)

21 = − 1
4γ e−τq(J 2 − J 2

3 + 1
4) (2.28)

and

dett (u) = u−3(u − 1)−3f (u2 − u + 3
16)

3∑
i=1

x2
i . (2.29)

It is easy to check that
∑3

i=1 x2
i commutes witht (n)

ab (n 6 3). It follows that

tr t (u) = 1 + u−1αp + u−2{− 1
4(J 2 + 3J 2

3 + 1
4) + αpJ3 + f x− + βγ x+}

+ 1
4u−3{−(αp − J3)(J

2 − J 2
3 + 1

4) + f [J−, x3]+ + βγ [J+, x3]+} (2.30)

where [A, B]+ = AB + BA andf = f4.
The coefficient ofu−2 can be viewed as the Hamiltonian of the system, and hence

the truncatedt (u) given by (2.28) and (2.30) is interpreted as a Goryachev–Chaplygin
gyrostat [7]. Actually, by making the rotation transformation about thex3-axis for both
coordinates and angular momentum (denote byx′ and J ′, respectively) we obtain the
conserved quantities [7]

Hp = 1
2{ 1

4λ(J ′2 + 3J ′2
3 ) − bx ′

1 − αpJ ′
3} + 1

16λ (2.31)

Gp = − 1
4{(αp − 1)J ′

3(J
′2 − J ′2

3 + 1
4) + b[x3, J

′
1]+} (2.32)

whereb2 = 4βγf .
Let us summarize the procedure for solving the truncatedt (u) as follows.



Truncated global transfer matrix 6885

(1) Making the truncation atn = 4 in the expansion (2.3) and substituting it into the
RTT relation (2.2), find the relations (2.12), (2.13) and (2.15)–(2.17).

(2) Find a realization for (2.12), (2.13) and (2.15)–(2.17), namely, use the simple algebra
(2.23)–(2.26) to expresst (n)

ab (n 6 3) such that the RTT relation (2.2) is satisfied.
(3) Obtain the conserved quantities and set up the corresponding models.
Condition (2.26) and

∑
i x

2
i = r2 are nothing but the Casimirs of the algebra (2.22)–

(2.24). It is well known that equation (2.26) leads to the vanishing monopole contribution
associated withE(3) topology, whereas (2.29) indicates thatr2 is the deformed determinant.
It is natural to extend the above idea to the transfer matrixT (u) associated with the
trigonometric solutionŘ(x)(x = eiu) of the YBE. The process is parallel to theq-
deformation of the rational case. First, we makeT (x) truncated and substitute it into
the RTT relation forR(x) being a trigonometric solution of the YBE. Next, we find an
algebraic set which is theq-deformation of (2.23)–(2.26) such that the expressedT (x)

satisfies the RTT relation for the trigonometric case. Finally, such aq- deformation should
include the results shown by (2.1)–(2.3) as a rational limit.

It is well known that the rational solution of̌R(u) given by (2.4) can be regarded as
the rational limit of the trigonometricR-matrix describing the six-vertex model [10]:

ŘT (x) =


a(x)

w b(x)

b(x) w

a(x)

 (2.33)

ŘT (xy−1)(T (x) ⊗ T (y)) = (T (y) ⊗ T (x))ŘT (xy−1) (2.34)

wherea(x) = qx − q−1x−1, b(x) = x − x−1, w = q − q−1, x = eu andq = eγ . Following
Drinfeld [3] the transfer matrixT (u) obeying (2.34) forŘ = ŘT should have the expansion
form

T (x) =
+∞∑

n=−∞
xnT (n). (2.35)

We want to find the truncated solutionT (u)(|n| 6 3), i.e. that which possesses the form
T (x) = ∑3

n=−3 xnT (n) which takes the solution (2.28) as a rational limit. We shall see that
this extension will give rise to non-commutative coordinates.

3. General formula for truncated T (m)(x) at m = 4

For theR-matrix given by (2.33) the RTT relation is shown by (2.34). Substituting

T (x) =
[

T11(x) T12(x)

T21(x) T22(x)

]
=

+∞∑
n=−∞

xnT (n) (3.1)

or

Tab(x) =
∞∑

n=−∞
xnT

(n)
ab (a, b = 1, 2) (3.2)

into (2.33) we derive

[T (k)
ab , T

(j)

ab ] = 0 [T (k)

11 , T
(j)

22 ] = [T (j)

11 , T
(k)

22 ] [T (k)

12 , T
(j)

21 ] = [T (j)

12 , T
(k)

21 ]

qT (k−1)
aa T

(j+1)

ab − q−1T (k+1)
aa T

(j+1)

ab = T
(j+1)

ab T (k−1)
aa − T

(j−1)

ab T (k+1)
aa + wT (j)

aa T
(k)
ab

qT
(k−1)
ab T (j+1)

aa − q−1T
(k+1)
ab T (j−1)

aa = T (j+1)
aa T

(k−1)
ab − T (j−1)

aa T
(k+1)
ab + wT

(j)

ab T (k)
aa
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qT
(j+1)

ba T (k−1)
aa − q−1T

(j−1)

ba T (k+1)
aa = T (k−1)

aa T
(j+1)

ba − T (k+1)
aa T

(j−1)

ba + wT
(k)
ba T (j)

aa

qT (j+1)
aa T

(k−1)
ba − q−1T (j−1)

aa T
(k+1)
ba = T

(k−1)
ba T (j+1)

aa − T
(k+1)
ba T (j−1)

aa + wT (j)
aa T

(k)
ba

[T (k−1)

22 , T
(j+1)

11 ] − [T (k+1)

22 , T
(j−1)

11 ] = w(T
(j)

12 T
(k)

21 − T
(k)

12 T
(j)

21 )

[T (k−1)

21 , T
(j+1)

12 ] − [T (k+1)

21 , T
(j−1)

12 ] = w(T
(j)

11 T
(k)

22 − T
(k)

11 T
(j)

22 ). (3.3)

The inverse ofT (x) is given by

[T (x)]−1 = [det
q

T (x)]−1

[
T22(q

−1x) −T12(q
−1x)

−T21(q
−1x) T11(q

−1x)

]
(3.4)

where

det
q

T (x) = T11(x)T22(q
−1x) − T12(x)T21(q

−1x). (3.5)

It is easy to show that

[det
q

T (x), Tab(y)] = 0. (3.6)

Correspondingly

det
q

T (x) =
∑
n=0

x−nCn Cn =
∑

k+j=n

q−j (T
(k)

11 T
(j)

22 − T
(k)

12 T
(j)

21 ) (3.7)

and

tr T (x) =
∑

n

(T
(n)

11 + T
(n)

22 )xn. (3.8)

T (n) is called truncated ifT (n) = 0 for |n| > 4.
To solve (3.3) we take the ansatz (motivated by the rational correspondence)

T
(±2)

11 = T
(0)

11 = T
(±3)

22 = T
(±2)

22 = T
(0)

22 = T
(±3)

12 = T
(±1)

12 = T
(±3)

21 = T
(±1)

21 = 0 (3.9)

which makes (3.3) reduce to the following set:

[T (k)
ab , T

(j)

ab ] = 0 q±1T
(±3)

11 T
(j)

12 = T
(j)

12 T
(±3)

11

q∓1T
(±3)

11 T
(j)

21 = T
(j)

21 T
(±3)

11

q±1T
(±2)

21 T
(j)

22 = T
(j)

22 T
(±2)

21 (j = ±1, ∓1)

q±1T
(j)

22 T
(±2)

12 = T
(±2)

12 T
(j)

22 (j = ±1, ∓1)

q±1T
(±1)

22 T
(0)

21 = T
(0)

21 T
(±1)

22 ± wT
(∓1)

22 T ±2
21

q±1T
(0)

12 T
(±1)

22 = T
(±1)

22 T
(0)

12 ± wT
(±2)

12 T
(∓1)

22

q±1T
(j±1)

11 T
(±2)

21 = T
(±2)

21 T
(j±1)

11 ± wT
(±3)

11 T
(j)

21 (j = 0, ∓2)

q±1T
(±2)

12 T
(j±1)

11 = T
(j±1)

11 T
(±2)

12 ± wT
(j)

12 T
(±3)

11 (j = 0, ∓2)

q±1T
(0)

21 T
(j±1)

11 ± wT
(∓2)

21 T
(±3)

11 = T
(±1)

11 T
(0)

21 ± wT
(±2)

21 T
(±1)

11

q±1T
(j±1)

11 T
(0)

12 ± wT
(±3)

11 T
(∓2)

12 = T
(0)

12 T
(±1)

11 ± wT
(∓1)

11 T
(±2)

12

[T (±2)

21 , T
(∓2)

12 ] = 0 [T (±2)

21 , T
(±2)

12 ] = ∓wT
(±3)

11 T
(±1)

22

[T (0)

21 , T
(0)

12 ] = ±w(T
(∓1)

11 T
(±1)

22 − T
(±1)

11 T
(∓1)

22 )

[T (±3)

11 , T
(j)

22 ] = 0 (j = ±1, ∓1)

[T (±1)

22 , T
(±1)

11 ] = ±w(T
(0)

12 T
(±2)

21 − T
(±2)

12 T
(0)

21 )

[T (±1)

22 , T
(±1)

11 ] = ±w(T
(∓2)

12 T
(±2)

21 − T
(±2)

12 T
(∓2)

21 )

[T (±2)

12 , T
(0)

21 ] = [T (0)

12 , T
(±2)

21 ] = ±wT
(±3)

11 T
(∓1)

22 (3.10)
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where, for example, [T (±2)

21 , T
(∓2)

12 ] = 0 means that [T (+2)

21 , T
(−2)

12 ] = [T (−2)

21 , T
(+2)

12 ] = 0.
To solve the set of relations (3.10), which is still complicated, we set

T
(±3)

11 = ±λ3e∓iηP T
(±1)

11 = A
(0)
± + e∓iηP A

(1)
± + e±iηP A

(2)
±

T
(±2)

12 = eiξQ∓iηP E±2 T
(0)

12 = eiξQ(E(0) + e−iηP E(−) + eiηP E(+))

T
(±2)

21 = α2K
±1e−iξQ T

(0)

21 = e−iξQF0 q = eiξη (3.11)

whereλ3, α2, ξ andη are constants,P andQ satisfy

[P, Q] = −i (3.12)

andA
(i)
± (i = 0, 1, 2), E±2, E(j)(j = 0, ±), F0 andK are operators commuting withP and

Q. They will be determined by (3.10).

Proposition 3.1. With the ansatz (3.11) and by setting

KE±2 = q−1E±2K (3.13)

the set of relations

A
(2)
± = ∓λ3K

±2 A
(1)
± = ±λ3α

−1
2 K∓S F0 = S

E± = −E±2K
±2 T

(±1)

22 = ±λ−1
3 α2E±2K

±1 (3.14)

solves (3.10) ifA(0)
± , E±2, E(0) andS satisfy the following algebraic relations:

q2E−2E+2 = E+2E−2 [A(0)
+ , A

(0)
− ] = [K, S] = 0

KA
(0)

±−1 = qA
(0)
± K q±1E±2A

(0)
∓ = A

(0)
∓ E±2

q±1E±2A
(0)
± − A

(0)
± E±2 = λ3wE(0)

SA
(0)
± − q∓1A

(0)
± S = ±α2wA

(0)
∓ K±1

SE±2 − q±1E±2S = ±α2wE∓2K
∓1. (3.15)

Proof. Substituting (3.11), (3.13) into (3.10) after calculations we find (3.14) under the
condition (3.15). �

We will show that the realization of (3.13)–(3.15) can be made through theq-deformation
of (2.22)–(2.26).

The setAq = {Ĵ±, Ĵ3; x̂±, x̂3} is defined by the six generators indicated in the script
parenthesis. They obey the commutation relations

[Ĵ±, Ĵ3] = ±Ĵ3 [Ĵ+, Ĵ−] = g[Ĵ3]q

[x̂±, Ĵ3] = ±x̂±
[Ĵ±, x̂3] = a

(1)
± Ĵ±x̂3 + a

(2)
± x̂±

[Ĵ±, x̂∓] = b
(1)
± Ĵ±x̂∓ + b

(2)
± x̂3

x̂∓x̂3 = f±x̂3x̂± [Ĵ±, x̂±] = [Ĵ3, x̂3] = 0 (3.16)

wheref± anda
(1)
± depend onq only and

[Ĵ3]q = (q − q−1)−1(qĴ3 − q−Ĵ3). (3.17)

g is arbitrary and will be restricted to be 2 or(q + q−1) by the fact that the rational limit
of (3.16) should be (2.22)–(2.25).
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The sufficient choice

f± = qδ± a
(2)
± = ±τ±K±δ± b

(2)
± = ∓τ−1

∓ gK∓δ± (3.18)

makes (3.16) self-consistent, where

K = eiξηĴ3 = qĴ3. (3.19)

δ± are independent ofq and obeyδ++δ− = +1 or −1, whereasτ± may be either dependent
on q or independent ofq and limq→1 τ± = 1. Obviously, (3.16) looks like a deformation
of E(3) algebra [10].

Proposition 3.2. The setAq

[Ĵ±, x̂±] = [Ĵ3, x̂3] = 0 (3.20a)

[Ĵ±, Ĵ3] = ±Ĵ3, [Ĵ+, Ĵ−] = g[Ĵ3]q (3.20b)

[x̂±, Ĵ3] = ±x̂± (3.20c)

qδ∓ Ĵ±x̂3 = x̂3Ĵ± ± τ±K±δ± x̂± (3.20d)

[x̂+, x̂−] = 0 x̂±x̂3 = qδ± x̂3x̂± (3.20e)

q−1Ĵ±x̂∓ = x̂∓Ĵ± ∓ τ−1
∓ qK∓δ± x̂3 (3.20f)

forms theq-associative algebraAq
+ for δ+ + δ− = 1 andAq

− for δ+ + δ− = −1. (3.20a)–
(3.20f) are nothing but theq-deformation of (2.22)–(2.26).

Theorem 3.1. Aq
+ andAq

− satisfy the same relation

g[Ĵ3]q x̂3 + τ−K−δ+ Ĵ+x̂− + τ+Kδ+ Ĵ−x̂+ = 0. (3.21)

It can be directly checked, see the appendix.
To show the meaning of (3.21) letq → 1 thenAq → A{J±, J3, x±, x3}, so that (3.21)

is reduced to (2.26). (3.21) means that theq-casimir has been chosen to be zero that
corresponding to the vanishing monopole afterq-deformation.

In the next section we shall prove that (3.20a)–(3.20f) (with the condition (3.21)) will
solve (3.14) and (3.15), namely, they provide a realization of (3.10).

4. Realization of truncatedT (n)(|n| 6 3) in terms of Aq

Theorem 4.1. Aq
± realize the trigonometric truncatedT (n) (T (n) = 0, for |n| > 4).

Proof. Setting

A
(0)
± = λ

(1)
± Ĵ−x̂3 + λ

(2)
± x̂−

E±2 = β
(1)
± Ĵ+x̂3 + β

(2)
± x̂+

S = λ1Ĵ+Ĵ− + λ2

K = exp(iξηĴ3) (4.1)

whereλ
(i)
± , β

(i)
± andλi (i = 1, 2) areK-dependent operators. Substituting (4.1) into (3.13)–

(3.15) and noting thatKA
(0)
± K−1 = qA

(0)
± , [K, S] = 0, the constraints on the unknown

parameters can completely be determined:

α2
2 = gα2 λ1 = (g − 1)wg−1α λ2 = α(q − K + K−1) (4.2)
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and

λ
(1)
− = 0 λ

(1)
+ = λ(+)K2(1−δ+)−β

λ
(2)
+ = (1 − q−1)−1q−δ+τ−K−1+δ+λ

(1)
+

λ
(2)
− = (1 − q−1)−1q−1−δ+α−1α2τ−K−1+δ+λ

(1)
+ β

(1)
+ = 0

β
(2)
− = −(1 − q−1)−1q−1+δ+τ+Kδ+β

(1)
− β

(1)
− = β(−)Kβ

β
(2)
+ = (1 − q−1)−1q−4+δ+α−1α2τ+Kδ+−2β

(1)
−

E(0) = −λ−1
3 w−1(1 − q−1)−1q−3+δ+gα−1α2K

−1β
(1)
− λ

(1)
+ (qK)(x̂3)

2 (4.3)

for δ+ + δ− = 1;

λ
(1)
+ = 0, λ

(1)

(−) = λ−K2(1+δ+)−β λ
(2)
− = (1 − q−1)−1q−δ+τ−K1+δ+λ

(1)
−

λ
(2)
+ = (1 − q−1)−1q−δ+α−1α2τ−K1+δ+λ

(1)
− β

(1)
− = 0

β
(2)
+ = −(1 − q−1)−1q1+δ+τ+Kδ+β

(1)
+ β

(1)
+ = β(+)Kβ

β
(2)
− = (1 − q−1)−1q4+δ+αα−1

2 τ+Kδ++2β
(1)
+

E(0) = −λ−1
3 w−1(1 − q−1)−1q3+δ+gαα−1

2 Kβ
(1)
+ λ

(1)
− (qK)(x̂3)

2 (4.4)

for δ+ + δ− = −1, whereδ+, α, β(±), λ(±) and τ± are arbitrary constants. Note that the
parametersβ(1)

∓ (K) depend onK andλ
(1)
± (qK) on qK, respectively, whereasδ+, α, β(±),

λ(±) andτ± are arbitrary constants. Thus (4.1)–(4.4) solve (3.13)–(3.15), namely they solve
(3.10) which solves the truncated transfer matrix(|m| 6 3) with special form (3.9). In other
words, we have made the realization ofT (n)(|n| 6 3) with the help ofq-deformed algebra
Aq

±. �

Theorem 4.2. The detq T (x) for T (n)(x) = 0 (|n| > 4) can be expressed bŷJ±, x̂± and x̂3

through

det
q

T (x) = {x2 + q2x−2 + α−1α2(1 + q)}C+2 (α−1α2 = ±q
1
2 ) (4.5)

where

C+2 = F2

{
τ−Kδ+

(
Ĵ+Ĵ−x̂3 − τ+Kδ+ x̂+x̂−

1 − q
+ w−1g(x̂3)

2

)}
(4.6)

with

F2 = λ−1
3 α(1 − q)−1q1−β−δ+β(+)λ(−)K2δ+ (4.7)

that leads to, forδ+ + δ− = −1,

C+ = F1

{
τ+Kδ+−1

(
Ĵ−Ĵ+x̂3 − τ−Kδ+−1x̂+x̂−

1 − q−1
+ wg(x̂3)

2

)}
(4.8)

where

F1 = λ−1
3 α(1 − q−1)−1q−2−β−δ+β(−)λ(+)K2(1−δ+). (4.9)
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Proof. The non-vanishingCn in (3.7) are

C±4 = q∓1(T
(±3)

11 T
(±1)

22 − q∓1T
(±2)

12 T
(±2)

21 )

C±2 = q±1T
(±3)

11 T
(∓1)

22 + q∓1T
(±1)

11 T
(±1)

22 − T
(±2)

12 T
(0)

21 − q∓2T
(0)

12 T
(±2)

21

C0 = qT
(+1)

11 T
(−1)

22 + q−1T
(−1)

11 T
(+1)

22 − q2T
(2)

12 T
(−2)

21 − q−2T
(−2)

12 T
(2)

21 T
(0)

12 T
(0)

21 . (4.10)

Substituting (3.11)–(3.15) into detq T (x) after calculations we obtainC−2 = q2C+2,
C0 = α−1α2(1 + q)C+2, C±4 = 0 andC+2 = q−1α2(λ

−1
3 A

(0)
+ E+2 − q−1E(0))K that lead to

(4.5) and (4.6).
It is straightforward to obtain

tr T (x) = λ3(e
−iηP x3 − eiηP x−3) + (A

(0)
+ + e−iηP A

(1)
+ + eiηP A

(2)
+ + λ−1

3 α2E+2K)x

+(A
(0)
− + e−iηP A

(2)
− + eiηP A

(1)
− − λ−1

3 α2E−2K
−1)x−1 (4.11)

whereA
(0)
± andE±2 are given by (4.1), whereasA(1)

± andA
(2)
± are given by (3.14).

From (4.11) it follows that besidesP being conserved there are other two conserved
quantities,T (1)

11 + T
(1)

22 andT
(−1)

11 + T
(−1)

22 . However, the form (3.8) is not good for taking
the rational limit in comparison with (2.28). We shall present the equivalent form of
T (n)(|n| 6 3) to make further discussion more explicit.

5. The equivalent form of T (x)

Rewriting (3.1) in the form

T (x) =
3∑

n=−3

xnT (n) = T (u) =
∑
n,m

sinn u cosm uT (n,m)

= T (0,0) + sinuT (1,0) + cosuT (0,1) + sin2 uT (2,0)

+ sinu cosuT (1,1) + sin2 u cosuT (2,1) + sin3 uT (3,0) (5.1)

wherex = eiu and substituting (3.11)–(3.15), (4.1), (4.3) into (5.1) we find

T
(3,0)

11 = −i8λ3 cos(ηP ) T
(2,1)

11 = i8λ3 sin(ηP )

T
(2,0)

21 = −e−iξQ4α2 cos(ξηĴ3) T
(1,1)

21 = −e−iξQ4α2 sin(ξηĴ3)

and

T
(2,0)

12 = −2eiξQβ
(1)
∓ {eiηP Ĵ+x̂3

−(1 − q−1)−1q−2+δ+τ+Kδ+−1x̂+(eiηP K − q−1α−1α2e−iηP K−1)}
T

(1,1)

12 = 2ieiξQβ
(1)
− {−eiηP Ĵ+x̂3

+(1 − q−1)q−2+δ+τ+Kδ+−1x̂+(eiηP K + q−1α−1α2e−iηP K−1)}
T

(0,0)

12 = eiξQβ
(1)
− {−λ−1

3 w−1(1 − q−1)−1q−3+δ+gα−1α2K
−1λ

(1)
+ (qK)(x̂3)

3

+2i(Ĵ+x̂3K
−1 − (1 − q−1)−1q−2+δ+τ+Kδ+−1x̂+(1 + q−1α−1α2)

× sin[η(P + ξ Ĵ3)])}
T

(0,0)

21 = e−iξQα{(q − 1)wg−1Ĵ+Ĵ− + (q + α−1α2)(K + (1 + α−1α2)K
−1)} (5.2)

T
(1,0)

11 = iλ(1)
+ {Ĵ−x̂3 + (1 − q−1)−1q−δ+τ−Kδ+−1(1 ∓ q− 1

2 )x̂−}
+2iλ3{±q− 1

2 (q − 1)wg−1 cos[η(P + ξ Ĵ3)]Ĵ+Ĵ−
+2 sin(ξηĴ3)(sin[η(P + ηĴ3)] ∓ sin[η(P + ξ Ĵ3 + ξ/2)])

+ cos[ηP (±q− 1
2 (q + 1) + 2)]}
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T
(0,1)

11 = λ
(1)
+ {Ĵ−x̂3 + (1 − q−1)q−δ+τ−Kδ+−1(1 ± q− 1

2 )x̂−}
−2iλ3{±q− 1

2 (q − 1)wg−1Ĵ+Ĵ− + 2(± cos[ηξ(Ĵ3 + 1
2)]

+ cos(ξηĴ3))} sin[η(P + ξ Ĵ3)]

T
(1,0)

22 = iλ−1
3 α2β

(1)
− {Ĵ+x̂3K

−1 + (1 − q−1)−1q−2+δ+τ+Kδ+−1x̂+(±q− 1
2 − 1)}

T
(0,1)

22 = λ−1
3 α2β

(1)
− {−Ĵ+x̂3K

−1 + (1 − q−1)q−2+δ+τ+Kδ+−1x̂+(±q− 1
2 + 1)}

for δ+ + δ− = 1 and the similar expressions forδ+ + δ− = −1.
The detq T (u) and trT (u) are rewritten in the forms

det
q

T (u) = {2q cos(2u − ξη) + α−1α2(1 + q)}C+2 (5.3)

and

tr T (u) = T
(3,0)

11 sin3 u + T
(2,1)

11 sin2 u cosu + (T
(1,0)

11 + T
(1,0)

22 ) sinu

+(T
(0,1)

11 + T
(0,1)

22 ) cosu. (5.4)

Following the inverse scattering methods,T
(3,0)

11 and T
(2,1)

11 correspond to the momentum
conservation. The Hamiltonian is defined by

H = f1{T (1,0)

11 + T
(1,0)

22 } (5.5)

and another constant of motion is

G = f2{T (0,1)

11 + T
(0,1)

22 } (5.6)

wheref1 andf2 are arbitrary constants.
The Hamiltonian of the system given by (5.1), (3.9), (2.33) and (2.34) can take the form

H = f1(2iλ3{αα−1
2 (q − 1)wg−1 cos[η(P + ξ Ĵ3)]Ĵ+Ĵ− + 2 sin(ξηĴ3)

×(sin[η(P + ξ Ĵ3] − α−1α2q
1
2 sin[η(P + ξ Ĵ3 + 1

2)]) + (αα−1
2 (q + 1) + 2)

× cos(ξP )} + D+) (5.7)

G = f2(−2iλ3{αα−1
2 (q − 1)wg−1Ĵ+Ĵ− + 2(αα−1

2 q
1
2 cos[ξη(Ĵ3 + 1

2)])

+ cos(ξηĴ3)} sin[η(P + ξ Ĵ3] + D−) (5.8)

whereD± are given by

D± = ε±{λ−1
3 α2β

(1)
+ (±Ĵ±x̂3K

−1 + (1 − q−1)−1q−2+δ+τ+Kδ+−1(α−1α2q
−1

∓1)x̂+) + λ
(1)
+ (Ĵ−x̂3 + (1 − q−1)−1q−δ+τ−K1+δ+(1 ∓ q−1α−1α2)x̂−)} (5.9)

for δ+ + δ− = 1, and

D± = ε±{λ−1
3 α2β

(1)
+ (Ĵ±x̂3K + (1 − q)−1q2+δ+τ+Kδ++1(αα−1

2 q ∓ 1)x̂+)

+λ
(1)
− (∓Ĵ+x̂3 + (1 − q)−1q−δ+τ−K1+δ+(αα−1

2 q ∓ 1)x̂−)} (5.10)

for δ+ + δ− = −1, with ε+ = i, ε− = 1.
It is noted that there are two possibilities

α = ±q− 1
2 α2 (5.11)

in (5.9) and (5.10).
We would like to remark that for the given standard six-vertexR-matrix (2.33) we

find a set of solutions for the truncated RTT relation (2.34). The solutions can be
realized through the algebra (3.20a)–(3.20f) and corresponding conserved quantities (5.4)
and (5.5). Equations (3.20a)–(3.20f) naturally yield the non-commutative geometry, since
the considered system is axially symmetric so that the coordinates on the(x1, x2) plane
commute with each other, whereas the third coordinatesx3 does not commute with them.
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6. Rational limit

Let us first takeα = −q− 1
2 α2. Whenq → 1, i.e. η → 0 by taking the arbitrariness of the

parametersλ3, α2, β(±) andλ(±) into account, we assume

λ3 → i 1
8η−3 α2 → − 1

4γ η−2 β−1 → i 1
4β−η−1

λ(+) → 1
2f+ β(+) → −i 1

4β+η−1 λ(−) → 1
2f− (6.1)

as q → 1, whereλ, γ , β± and f± are q-independent parameters. For simplicity we take
ξ = 1 and from (5.2) it follows that asq → 1

T
(3,0)

11 → λη−3 T
(2,1)

11 → −λη−2P

T
(2,0)

21 → γ η−2 e−iξQ T
(1,1)

21 → γ η−1Ĵ3 e−iξQ. (6.2)

Correspondingly we obtain forα = −q− 1
2 α2(λ = 1)

T
(2,0)

12 → η−2β∓ eiQx+
T

(1,1)

12 → −η−1β∓ eiQ{− 1
4[J+, x3]+ + x+(P + J3)}

T
(0,0)

12 → −β∓ eiQ{f±x2
3 + 1

4[J+, x3]+(P + J3)}
T

(0,0)

21 → − 1
4γ e−iQ(J 2 − J 2

3 + 1
4)

T
(1,0)

11 → η−1{− 1
4(J 2 + 3J 2

3 + 1
4) − λPJ3 + f±x−}

T
(0,1)

11 → 1
4(P + J3)(J

2 − J 2
3 + 1

4) + 1
4f∓[J−, x3]+

T
(1,0)

22 → γβ∓η−1x+
T

(0,1)

22 → 1
4γβ∓[J+, x3]+ (6.3)

where the upper subindices correspond toδ+ +δ− = 1 and the lower ones toδ+ +δ− = −1.
Taking q → 1 and making the transformations

P → −λ−1α′P Q → −λ−1α′Q u → ηu (6.4)

for δ+ + δ− = 1 we deriveT
(m,n)
ab → t

(m,n)
ab :

t11(u) = u3 + α′Pu2 − {− 1
4(J 2 + 3J 2

3 + 1
4) + α′P + f x−}u

− 1
4α′(P − α′−1J3)(J

2 − J 2
3 + 1

4) + 1
4f [J−, x3]+

t12(u) = β ′ e−iα′−1Q{u2 + ( 1
4[J+, x3]+ + x+(αP − λJ3)u

+ 1
4λ−1α′[J+, x3]+(P − λα′−1J3) − λ−1f x2

3}
t21(u) = γ eiα′−1Q{u2 + J3u − 1

4(J 2 − J 2
3 + 1

4)}
t22(u) = γβ ′(x+u + 1

4[J+, x3]+) (6.5)

wheref = f±, β ′ = β±. If we take

u → − 1
2u α′ = − 1

2 f = 1
4b β ′ = − 1

2b γ = − 1
2 (6.6)

(6.5) is nothing but the result given by (2.28) (see Sklyanin [7]).
It can be proved that whenδ+ + δ− = −1 we obtain the same rational limit. Besides,

(5.3) limits to (q → 1)

det
q

T (u)
q→1→
u→ηu

γβ ′f (u − 1
4)(u − 3

4)(x+x− + x2
3). (6.7)
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It is remarked that if theη-dependence ofλ3, α2, β(±) andλ(±) in (6.1) is given in a different
way it will give rise to a different rational limit. For instance, if we takeξ = 1 and let

λ3 → −i 1
8λη−1 α2 → 1

4γ

β(±) → 1
4β ′ λ(±) → ∓i 1

2f η (6.8)

for q → 1 whereλ, γ , β ′ andf areq-independent parameters, we have

T
(1,1)

12 → η−1β ′ e+iQx+ T
(0,0)

21 → γ e−iQ

T
(0,0)

12 → β ′ eiQ{f x2
3 − x+(P + J3)} T

(1,0)

11 → η−1λ (6.9)

T
(0,1)

22 → λ−1γβ ′x+ T
(0,1)

11 → f x− − λ(P + J3). (6.10)

Correspondingly,

det
q

T (u) → − 1
4λ−1γβ ′f (x+x− + x2

3) (6.11)

and

tr T (u) → λu − λ(P + J3) + f x− + λ−1γβ ′x+. (6.12)

The corresponding rational form oft (u) reads

t11(u) = λu − λ(P + J3) + f x−
t12(u) = β ′ eiQ{x+u + f x2

3 − x+(P + J3)}
t21(u) = γ e−iQ t22(u) = λ−1γβ ′x+ (6.13)

that satisfy (2.2) for theŘ-matrix given by (2.4).
In conclusion we have found a particular solution of the truncatedT (x) (at n = 4)

associated with the six-vertex form of theR-matrix. This solution is beyond those derived
in terms of the Yang-Baxterization of theT (u)-operator [12, 13]. The realization ofT (x) is
made through theq-deformed algebra (3.20a)–(3.20f) which include the non-commutative
geometry in their own physical meaning.

Since the process of the calculations is very complicated, here we have performed the
truncation only atn = 4. The more interesting example should be performed for largen.
It deserves progress in this respect, even though it is difficult.
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Appendix

First one takes the commutator betweenĴ− and the first line of (3.20d). The left-hand side
is equal to

qδ−(g[Ĵ3]q x̂3 + Ĵ+[Ĵ−, x̂3])

and the right-hand side reads

g(qδ− − 1)[Ĵ3]q x̂3 + qδ− Ĵ+[Ĵ−, x̂3] − [Ĵ−, x̂3]Ĵ+ − τ+[Ĵ−, Kδ+ x̂+].

By virtue of the second line of (3.20d) we have

−[Ĵ−, x̂3] = (qδ+ − 1)Ĵ−x̂3 + τ−K−δ− x̂−
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with which and

KĴ± = q∓1Ĵ±K

one obtains

g(qδ− − 1)[Ĵ3]q x̂3 − qδ− Ĵ−{(qδ+ − 1)Ĵ−x̂3 + τ−K−δ− x̂−} + {(qδ+ − 1)Ĵ−x̂3

+τ−K−δ− x̂−}Ĵ+ − τ+(Ĵ−Kδ+ x̂+ − Kδ− x̂+Ĵ−)

= g(qδ− − 1)[Ĵ3]q x̂3 + qδ−(qδ+ − 1)[Ĵ−, Ĵ+]x̂3 − τ−K−δ− Ĵ+x̂−
−(qδ+ − 1)τ+q−δ+Kδ+ Ĵ−x̂+ + τ−K−δ− x̂−Ĵ+ − τ+Kδ+(q−δ+ Ĵ−x̂+ − x̂+Ĵ−)

= g(qδ++δ− − 1)[Ĵ3]q x̂3 + τ−(q−(δ++δ−) − 1)K−δ− Ĵ+x̂−
+τ+{−q−δ+ − q−δ+(qδ+ − 1) + q−(δ++δ−)}Kδ+ Ĵ−x̂+ + gK−(δ++δ−)x̂3

−gK(δ++δ−)x̂3 = 0.

Whenδ+ + δ− = 1(Aq
+), i.e. K − K− = (q − q−1)[J3]q , this leads to

g[Ĵ3]q x̂3 + τ−K−δ− Ĵ+x̂− + τ+Kδ+ Ĵ−x̂+ = 0

for q−1 − 1 6= 0. Obviously, forδ+ + δ− = −1(Aq
−) we have the same result.
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